

Spoke Cavities at ANL - Past

1992

855 MHz, $\beta = 0.3$ Single-spoke, operated at 7+ MV/m (Jean Delayen, et al.)

1998

340 and 350 MHz, $\beta = 0.3$ and $\beta = 0.4$ Single-spoke cavities (operated at 10+ MV/m)

ANL Spoke Cavities Present & Future

2002

2003

Being prototyped:

345 MHz, $\beta = 0.4$ Double-spoke

Proposed:

Contributers

- ANL (Kelly, Fuerst, Kedzie)
- JLAB (Delayen, Brawley)
- LLNL (Rusnak)
- LANL (Schrage, Tajima, Krawcyk)
- AES (Peterson, Schultheiss, Rathke)
- Sciaky, Inc.(Hajno)

The RIA Driver Linac

Principal Elements of the RIA Driver Linac (configured for a beam of uranium)

SC Cavity types for the RIA Driver Linac (baseline design)

Ken Shepard – ANL

Spoke Cavity Workshop

Los Alamos

October 7-8, 2002

"Cavity-Walk" (voltage gain per cavity) for the Baseline RIA Driver Design

Some results of the Harrison committee cost review (January 2001)

- •Much of the linac cost scales linearly with the number of cavities (cavities, couplers, rf systems, cryomodules, cryogenics, control, alignment, installation, etc.)
- •Drift-tube linac cost = 97 M\$ (with contingency)
 - •393 k\$ total cost per cavity
 - Cost of bare cavity averaged 24% of total
- •Elliptical-cell Linac cost = 143 M\$
 - •762 k\$ total cost per cavity

Intermediate-velocity cavities for RIA

115 MHz QWR

QR _s =	42	
β_{Geom} =	0.15	
Eff. Length =	25 cm	
At 1 MV/m		
RF Energy =	170 mJ	
E _{peak} =	3.17 MV/m	
B _{peak} =	57 G	

QR _s =	58		
β_{Geom} =	0.26		
Eff. Length =	30 cm		
At 1 MV/m			
RF Energy =	345 mJ		
E _{peak} =	2.9 MV/m		
B _{peak} =	78 G		

Ken Shepard – ANL

Spoke Cavity Workshop

Los Alamos

October 7-8, 2002

Double-spoke for the RIA Driver Linac

345 MHz β = 0.4 Niobium cavity being prototyped for the RIA linac

QR _s =	71		
β_{Geom} =	0.393		
Eff. Length =	38.1 cm		
At 1 MV/m			
RF Energy =	151 mJ		
E _{peak} =	3.47 MV/m		
B _{peak} =	69 G		

Higher gradients in drift-tube cavities

In tests at ANL a 350 MHz, beta .4 spoke cavity has been operated CW at Ea = 7 MV/m (28 MV/m Epeak) for 1 month

In the past 18 months, highpressure water rinsing, at several different laboratories, has produced increased gradients in drift-tube cavities

Preliminary designs for triplespoke cavities for the RIA driver

ß GEOM	0.48	0.62
L _{EFFECTIVE}	65 cm	85 cm
Frequency	345 MHz	345 MHz
QR _S	92	103
€		
at 1 MV/m		
E _{PEAK}	3.0	3.1
B _{PEAK}	90	88
RF Energy	356 mJ	582 mJ

Why triple-spoke cavities?

- Fewer types (2) and a smaller total number of cavities are required, reducing costs and the length of the linac tunnel.
- The cavities can operate at a higher temperature, reducing the complexity of the cryogenic system and the total cryogenic load.
- Beam quality is improved, because of increased longitudinal acceptance and the elimination of a frequency transition
- The possibilities for beam loss and activation are reduced.
- Output energies for the lighter ions are increased, protons by more than 100 MeV, by the broader velocity acceptance of the triple-spoke geometry.
- For $\beta \le 0.6$, the spoke-loaded structure has superior mechanical stability

Voltage gain per cavity vs. velocity for 345 MHz spoke cavity option

Ken Shepard – ANL

Spoke Cavity Workshop

Los Alamos

October 7-8, 2002

Comparison of Beam Output Energies for Elliptical-cell and spoke cavity options

Species	Input	Strip Output Energy (MeV/A)			
	Q		E - 6 Cell	3 Spoke	
Н	1	none	893	988	
³ He	2	none	707	737	
D	1	none	587	595	
¹³⁶ Xe	18	twice	461	451	
²³⁸ U	29	twice	403	404	

A low frequency option for the high-energy section – 345 MHz spoke cavities

Ellipti	cal-Cell	Triple-Spoke	
Beta	# Cav	# Cav	Beta
0.031	5	5	0.031
0.061	32	32	0.061
0.151	30	30	0.151
0.263	88	100	0.263
0.393	72	**	**
Subtotal	227	167	DT Cavities
0.490	58	66	0.475
0.610	80	104	0.617
0.810	28	**	**
Subtotal	166	170	Hi-beta Cavities
Total	393	337	Cavity Count

Longitudinal Acceptance for the 805 MHz and 345 MHz Options

345 MHz Spoke cavities increase the longitudinal acceptance four-fold

805 MHz Elliptical-cell cavities